Contents

Preface XVil
Acknowledgments XiX
1 About this Book 1
1.1 WhythisBook e 1
1.2 What You Should Know Before Reading thisBook 2
1.3 Style and StructureoftheBook 2
1.4 HowtoReadthisBook. 4
15 Stateofthe Art 5
1.6 Example Code and Additional Information 5
1.7 Feedback 5
2 Introduction to C++ and the Standard Library 7
2.1 HIstory 7
2.2 NewlLanguage Features 9
221 Templates e 9
2.2.2 Explicit Initialization for Fundamental Types 14
2.23 ExceptionHandling 15
224 NamMESPACES. o i 16
225 TYpebool 18
2.2.6 Keywordexplicit v v i i 18
2.2.7 New Operators for Type Conversion 19
2.2.8 Initialization of Constant Static Members 20
2.2.9 Definition ofnain() L 21
2.3 Complexity and the Big-O Notation 21

Vi Contents

3 General Concepts 23
3.1 Namespacetd 23
3.2 HeaderFiles e 24
3.3 Errorand ExceptionHandling 25

3.3.1 Standard ExceptionClasses 25
3.3.2 Membersof ExceptionClasses. 28
3.3.3 Throwing Standard Exceptions. 29
3.3.4 Deriving Standard ExceptionClasses.. 30
3.4 Allocators e 31
4 Utilities 33
4.1 Pairs . . . e e 33
4.1.1 Convenience Functialake_pair() 36
412 ExamplesofPairUsage 37
4.2 Classauto_ptr 38
4.2.1 Motivation of Clasguto_ptr 38
4.2.2 Transfer of Ownershipbyuto_ptr 40
4.2.3 auto_ptrsasMembers. 44
424 MiSUSINGRULO_PETS 46
425 auto_ptrExamples 47
4.2.6 Clasauto_ptrinDetail 51
4.3 NumericLimits. 59
4.4 Auxiliary Functions 66
4.4.1 Processing the Minimum and Maximum. 66
442 SwappingTwoValues. 67
4.5 Supplementary Comparison Operators... 69
4.6 Header Filegcstddef>and<cstdlib> 71
4.6.1 Definitionsirkestddef>o 71
4.6.2 Definitions irKkestdlib>. 71

5 The Standard Template Library 73
51 STLCOmMpoNeNntS e 73
5.2 Containers. 75

5,21 SequenceContainers. i 76
5.2.2 Associative Containers 81

5.2.3 Container Adapters 82

Contents vii

53 lterators e 83
5.3.1 Examples of Using Associative Containers. 86
5.3.2 lterator Categories 93

54 Algorithms 94
541 RaANGES e e 97
5.4.2 Handling Multiple Ranges 101

55 lterator Adapters 104
5.5.1 Insertlterators 104
55.2 Streamlterators 107
5.5.3 Reverselterators 109

5.6 Manipulating Algorithms 111
5.6.1 “Removing”Elements. 111
5.6.2 Manipulating Algorithms and Associative Containers 115
5.6.3 Algorithms versus Member Functions. 116

5.7 User-Defined Generic Functions, 117

5.8 Functions as Algorithm Arguments 119
5.8.1 Examples of Using Functions as Algorithm Arguments 119
5.8.2 Predicates 121

5.9 FunctionObjects 124
5.9.1 What Are Function Objects?, 124
5.9.2 Predefined FunctionObjects. 131

5.10 ContainerElements. 134
5.10.1 Requirements for Container Elements 134
5.10.2 Value Semantics or Reference Semantics 135

5.11 Errors and Exceptions Insidethe STL 136
5.11.1 ErrorHandling 137
5.11.2 ExceptionHandling, 139

5.12 Extendingthe STL 141

6 STL Containers 143

6.1 Common Container Abilities and Operations 144
6.1.1 Common Container Abilities 144
6.1.2 Common Container Operations 144

6.2 MeCtOrs e 148
6.2.1 Abilitiesof Vectors 148

6.2.2 VectorOperations 150

viii Contents
6.2.3 Using Vectors as Ordinary Arrays o v v v v et oo 155
6.2.4 ExceptionHandling, 155
6.2.5 ExamplesofUsingVectors 156
6.2.6 Classrector<bool> 158
6.3 Deques e 160
6.3.1 Abilitiesof Deques 161
6.3.2 Deque Operations 162
6.3.3 ExceptionHandling o 164
6.3.4 ExamplesofUsingDeques 164
6.4 LiStS 166
6.4.1 AbilitiesofLists. 166
6.4.2 ListOperations 167
6.4.3 ExceptionHandling 172
6.4.4 ExamplesofUsingLists 172
6.5 SetsandMultisets 175
6.5.1 Abilities of Setsand Multisets. 176
6.5.2 Setand Multiset Operations 177
6.5.3 ExceptionHandling 185
6.5.4 Examples of Using Sets and Multisets. 186
6.5.5 Example of Specifying the Sorting Criterion at Runtime..... 191
6.6 Mapsand Multimaps 194
6.6.1 Abilities of Maps and Multimaps 195
6.6.2 Mapand Multimap Operations. 196
6.6.3 Using Maps as Associative Arrays oo 205
6.6.4 ExceptionHandling 207
6.6.5 Examples of Using Maps and Multimaps 207
6.6.6 Example with Maps, Strings, and Sorting Criterion at Runtime 213
6.7 Other STLContainers e e e 217
6.7.1 Stringsas STLContainers 217
6.7.2 Ordinary Arrays as STL Containers 218
6.7.3 HashTables 221
6.8 Implementing Reference Semantics 222
6.9 WhentoUsewhichContainer. 226
6.10 Container Types and MembersinDetail 230
6.10.1 TypeDefinitions 230

6.10.2 Create, Copy, and Destroy Operations 231

Contents iX

6.10.3 Nonmodifying Operations 233
6.10.4 ASSIgNMENES o e e e 236
6.10.5 DirectElementAccess e 237
6.10.6 Operationsto Generate lterators. 239
6.10.7 Inserting and Removing Elements 240
6.10.8 Special Member FunctionsforlLists 244
6.10.9 Allocator Support 246
6.10.10 Overview of Exception Handling in STL Containers. 248
7 STL Iterators 251
7.1 HeaderFilesforlterators e 251
7.2 lterator Categories e e e e 251
7.2.1 Inputlterators. 252
7.2.2 Outputlterators e 253
7.2.3 Forwardlterators 254
7.2.4 Bidirectional lterators 255
7.25 RandomAccesslterators o 255
7.2.6 The Increment and Decrement Problem of Vector Iterators. 258
7.3 Auxiliary lterator Functions 259
7.3.1 Stepping lterators Usirgivance() 259
7.3.2 Processing Iterator Distance Usiigtance() 261
7.3.3 Swapping lterator Values Usidger_swap() 263
7.4 lterator Adapters e 264
7.4.1 Reverselterators 264
7.4.2 Insertlterators e 271
7.4.3 Streamlterators e 277
7.5 lteratorTraitS e 283
7.5.1 Writing Generic Functions for Iterators 285
7.5.2 User-DefinedlIterators. 288
8 STL Function Objects 293
8.1 The Concept of Function Objects 293
8.1.1 Function Objects as Sorting Criteria 294
8.1.2 Function Objects with InternalState 296
8.1.3 The Return Value dfor_each() 300

8.1.4 Predicates versus Function Objects 302

Contents

8.2 Predefined Function Objects. 305
8.2.1 FunctionAdapters 306
8.2.2 Function Adapters for Member Functions. 307
8.2.3 Function Adapters for Ordinary Functions. 309
8.2.4 User-Defined Function Objects for Function Adapters 310
8.3 Supplementary Composing Function Objects 313
8.3.1 Unary Compose Function Object Adapters. 314
8.3.2 Binary Compose Function Object Adapters 318
STL Algorithms 321
9.1 AlgorithmHeaderFiles 321
9.2 Algorithm Overview. 322
9.2.1 ABriefiIntroduction 322
9.2.2 Classification of Algorithms 323
9.3 Auxiliary Functions 332
9.4 Thefor_each() Algorithm 334
9.5 Nonmodifying Algorithms 338
9.5.1 CountingElements 338
9.5.2 Minimumand Maximum 339
9.5.3 SearchingElements... 341
9.5.4 ComparingRanges 356
9.6 Modifying Algorithms 363
9.6.1 CopyingElements 363
9.6.2 Transforming and Combining Elements. 366
9.6.3 SwappingElements... L 370
9.6.4 AssigningNew Values. 372
9.6.5 ReplacingElements 375
9.7 Removing Algorithms. 378
9.7.1 Removing CertainValues 378
9.7.2 RemovingDuplicates 381
9.8 Mutating Algorithms. 386
9.8.1 Reversingthe Orderof Elements 386
9.8.2 RotatingElements 388
9.8.3 PermutingElements... Lo 391
9.8.4 ShuffingElements 393
9.8.5 Moving ElementstotheFront 395

Contents Xi
9.9 Sorting Algorithms 397
9.9.1 SortingAllElements. 397
9.9.2 PartialSorting 400
9.9.3 Sorting According to theth Element 404
9.9.4 HeapAlgorithms 406
9.10 Sorted Range Algorithms 409
9.10.1 SearchingElements... 410
9.10.2 MergingElements 416
9.11 Numeric Algorithms. 425
9.11.1 ProcessingResults 425
9.11.2 Converting Relative and Absolute Values. 429
10 Special Containers 435
10.1 Stacks. o e 435
10.1.1 TheCorelnterface 436
10.1.2 ExampleofUsing Stacks 437
10.1.3 Classtack<>inDetail 438
10.1.4 AWUser-Defined StackClass, 441
10.2 QUEUES o o e 444
10.2.1 TheCorelnterface e 445
10.2.2 Example of UsingQueues 446
10.2.3 Clasgueue<>inDetail 447
10.2.4 AUser-DefinedQueueClass 450
10.3 Priority QUEUES o e e 453
10.3.1 TheCorelnterface 455
10.3.2 Example of Using Priority Queues 455
10.3.3 Claspriority_queue<>inDetail 456
10.4 BItSetS e 460
10.4.1 ExamplesofUsingBitsets 460
10.4.2 Clas®itsetinDetail 463
11 Strings 471
11.1 Motivation e 471
11.1.1 A First Example: Extracting a Temporary File Name 472
11.1.2 A Second Example: Extracting Words and Printing Them Backward 476
11.2 Descriptionofthe StringClasses 479

11,21 String TYPesS o o o o e 479

Xii

Contents

11.2.2
11.2.3
11.2.4
11.25
11.2.6
11.2.7
11.2.8
11.2.9

11.31
11.3.2
11.3.3
11.3.4
11.35
11.3.6
11.3.7
11.3.8
11.3.9

12 Numerics

12.1 Complex Numbers
12.1.1 Examples Using Class Complex
12.1.2 Operations for Complex Numbers
12.1.3 Classomplex<> in Detail

12.2 Valarrays
12.2.1 Getting to Know Valarrays
12.2.2 Valarray Subsets

Operation Overview..
Constructors and Destructors
Stringsand C-Strings
SizeandCapacity
ElementAccess
comparisons
Modifiers
Substrings and String Concatenation.....
11.2.10 Input/Output Operators
11.2.11 Searching and Finding
11.2.12 The Valuepos
11.2.13 Iterator Support for Strings
11.2.14 Internationalization
11.2.15 Performance
11.2.16 Strings and Vectors
11.3 String Class in Detall
Type Definitions and Static Values
Create, Copy, and Destroy Operations
Operations for Size and Capacity
Comparisons
Character Access

Generating C-Strings and Character Arrays

Modifying Operations
Searchingand Finding
Substrings and String Concatenation.....
11.3.10 Input/Output Functions
11.3.11 Generating Iterators
11.3.12 Allocator Support

Contents Xiii

12.2.3 ClassalarrayinDetail 569
12.2.4 Valarray Subset ClassesinDetail 575
12.3 Global Numeric Functions 581
13 Input/Output Using Stream Classes 583
13.1 Common Background of /O Streams. 584
13.1.1 StreamObjects 584
13.1.2 Stream Classes e 584
13.1.3 Global Stream Objects 585
13.1.4 Stream Operators e e e 586
13.1.5 Manipulators. 586
13.1.6 ASimpleExample 587
13.2 Fundamental Stream Classesand Objects 588
13.2.1 Classesand Class Hierarchy 588
13.2.2 GlobalStreamObjects 591
13.2.3 HeaderFiles 592
13.3 Standard Stream Operategrksand>> 593
13.3.1 OutputOperatei< o e 593
13.3.2 InputOperator> 594
13.3.3 Input/Output of Special Types 595
13.4 Stateof Streams e e 597
13.4.1 Constants forthe Stateof Streams 597
13.4.2 Member Functions Accessing the State of Streams. 598
13.4.3 Stream State and Boolean Conditions 600
13.4.4 Stream State and Exceptions. o oo oL 602
13.5 Standard Input/Output Functions 607
13.5.1 Member Functionsforlnputo 607
13.5.2 Member FunctionsforOutput 610
13.5.3 ExampleUses 611
13.6 Manipulators. 612
13.6.1 How ManipulatorsWork 612
13.6.2 User-Defined Manipulators 614
13.7 Formatting. e 615
13.7.1 FormatFlags 615
13.7.2 Input/Output Format of BooleanValues. 617

13.7.3 Field Width, Fill Character, and Adjustment 618

Contents

Xiv
13.7.4 Positive Sign and Uppercase Letters 620
13.7.5 NumericBase 621
13.7.6 Floating-PointNotation 623
13.7.7 General Formatting Definitions. 625
13.8 Internationalization 625
139 File ACCESS. o o i e 627
13.9.1 FileFlags 631
13.9.2 RaNdOMACCESS . ..ov v v e i e e e e e e e e 634
13.9.3 Using File Descriptors. 637
13.10 Connecting Input and Output Streams 637
13.10.1 Loose Coupling Usingie() i 637
13.10.2 Tight Coupling Using Stream Buffers 638
13.10.3 Redirecting Standard Streams.. 641
13.10.4 Streams for Readingand Writing 643
13.11 Stream Classesfor Strings 645
13.11.1 String Stream Classes 645
13.11.2char* Stream Classes 649
13.12 Input/Output Operators for User-Defined Types... 652
13.12.1 Implementing Output Operators. 652
13.12.2 Implementing InputOperators. 654
13.12.3 Input/Output Using Auxiliary Functions 656
13.12.4 User-Defined Operators Using Unformatted Functions. 658
13.12.5 User-Defined FormatFlags 659
13.12.6 Conventions for User-Defined Input/Output Operators 662
13.13 The Stream BufferClasses e 663
13.13.1 User's View of Stream Buffers 663
13.13.2 Stream Buffer Iterators 665
13.13.3 User-Defined Stream Buffers 668
13.14 Performance ISSUEeS e 681
13.14.1 Synchronization with C’s Standard Streams682
13.14.2 Bufferingin Stream Buffers o o 682
13.14.3 Using Stream Buffers Directly 683
14 Internationalization 685
14.1 Different Character Encodings., 686

14.1.1 Wide-Character and Multibyte Text. 686

Contents XV
14.1.2 CharacterTraits e 687
14.1.3 Internationalization of Special Characters 691
14.2 The Conceptoflocales 692
14.2.1 UsinglLocales 693
1422 LocaleFacets 698
14.3 LocalesinDetail 700
144 FacetsinDetail 704
14.4.1 NumericFormatting 705
14.4.2 Time and Date Formatting 708
14.4.3 Monetary Formatting Lo 711
14.4.4 Character Classificationand Conversion 715
14.45 String Collation 724
14.4.6 InternationalizedMessageso 725
15 Allocators 727
15.1 Using Allocators as an Application Programmer. 727
15.2 Using Allocators as a Library Programmer 728
15.3 The Default Allocator. 732
15.4 AUser-Defined Allocator 735
15.5 AllocatorsinDetail 737
15.5.1 Type Definitions 737
15,52 Operations o e 739
15.6 Utilities for Uninitialized Memory inDetail 740
Internet Resources 743
Bibliography 745
Index 747

Preface

In the beginning, | only planned to write a small German book (400 pages or so) about the C++ stan-
dard library. That was in 1993. Now, in 1999 you see the result — an English book with more than
800 pages of facts, figures, and examples. My goal is to describe the C++ standard library so that
all (or almost all) your programming questions are answered before you think of the question. Note,
however, that this is not a complete description of all aspects of the C++ standard library. Instead,
| present the most important topics necessary for learning and programming in C++ by using its
standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific
details needed to support every-day programming tasks. Specific code examples are provided to help
you understand the concepts and the details.

That's it — in a nutshell. | hope you get as much pleasure from reading this book as | did from
writing it. Enjoy!

Acknowledgments

This book presents ideas, concepts, solutions, and examples from many sources. In a way it does
not seem fair that my name is the only name on the cover. Thus, I'd like to thank all the people and
companies who helped and supported me during the past few years.

First, I'd like to thank Dietmar Kihl. Dietmar is an expert on C++, especially on input/output
streams and internationalization (he implemented an I/O stream library just for fun). He not only
translated major parts of this book from German to English, he also wrote sections of this book using
his expertise. In addition, he provided me with invaluable feedback over the years.

Second, I'd like to thank all the reviewers and everyone else who gave me their opinion. These
people endow the book with a quality it would never have had without their input. (Because the list
is extensive, please fogive me for any oversight.) The reviewers for the English version of this book
included Chuck Allison, Greg Comeau, James A. Crotinger, Gabriel Dos Reis, Alan Ezust, Nathan
Meyers, Werner Mossner, Todd Veldhuizen, Chichiang Wan, Judy Ward, and Thomas Wikehult.
The German reviewers included Ralf Boecker, Dirk Herrmann, Dietntdnl KEdda lorke, Herbert
Scheubner, Dominik Strasser, and Martin Weitzel. Additional input was provided by Matt Austern,
Valentin Bonnard, Greg Colvin, Beman Dawes, Bill Gibbons, Lois Goldthwaite, Andrew Koenig,
Steve Rumbsby, Bjarne Stroustrup, and David Vandevoorde.

Special thanks to Dave Abrahams, Janet Cocker, Catherine Ohala, and Maureen Willard who
reviewed and edited the whole book very carefully. Their feedback was an incredible contribution
to the quality of this book.

A special thanks goes to my “personal living dictionary” — Herb Sutter — the author of the
famous “Guru of the Week” (a regular series of C++ programming problems that is published on the
comp.std.c++.moderated Internet newsgroup).

I'd also like to thank all the people and companies who gave me the opportunity to test my
examples on different platforms with different compilers. Many thanks to Steve Adamczyk, Mike
Anderson, and John Spicer from EDG for their great compiler and their support. It was a big help
during the standardization process and the writing of this book. Many thanks to P. J. Plauger and
Dinkumware, Ltd, for their early standard-conforming implementation of the C++ standard library.
Many thanks to Andreas Hommel and Metrowerks for an evaluative version of their CodeWarrior
Programming Environment. Many thanks to all the developers of the free GNU and egcs compilers.
Many thanks to Microsoft for an evaluative version of Visual C++. Many thanks to Roland Hartinger
from Siemens Nixdorf Informations Systems AG for a test version of their C++ compiler. Many
thanks to Topjects GmbH for an evaluative version of the ObjectSpace library implementation.

XX Acknowledgments

Many thanks to everyone from Addison Wesley Longman who worked with me. Among oth-
ers this includes Janet Cocker, Mike Hendrickson, Debbie Lafferty, Marina Lang, Chanda Leary,
Catherine Ohala, Marty Rabinowitz, Susanne Spitzer, and Maureen Willard. It was fun.

In addition, I'd like to thank the people at BREDEX GmbH and all the people in the C++ com-
munity, particularly those involved with the standardization process, for their support and patience
(sometimes | ask really silly questions).

Last but not least, many thanks and kisses for my family: Ulli, Lucas, Anica, and Frederic. |
definitely did not have enough time for them due to the writing of this book.

Have fun and be human!

Chapter 1
About this Book

1.1 Why this Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This
led to the goal of standardization. Only by having a standard, could programs be written that would
run on different platforms — from PCs to mainframes. Furthermore, a stalidiang would enable
programmers to use general components and a higher level of abstraction without losing portability,
rather than having to develop all code from scratch.

The standardization process was started in 1989 by an international ANSI/ISO committee. It
developed the standard based on Bjarne Stroustrup’s biduk€&++ Programming Languagand
The Annotated C++ Reference Manudfter the standard was completed in 1997, several formal
motions by different countries made it an international ISO and ANSI standard in 1998. The stan-
dardization process included the development of a C++ standard library. The library extends the core
language to provide some general components. By using C++’s ability to program new abstract and
generic types, the library provides a set of common classes and interfaces. This gives programmers
a higher level of abstraction. The library provides the ability to use

e String types

¢ Different data structures (such as dynamic arrays, linked lists, and binary trees)

e Different algorithms (such as different sorting algorithms)

e Numeric classes

e Input/output (1/0) classes

e Classes for internationalization support

All of these are supported by a fairly simple programming interface. These components are very

important for many programs. These days, data processing often means inputting, computing, pro-
cessing, and outputting large amounts of data, which are often strings.

The library is not self-explanatory. To use these components and to benefit from their power, you
need a good introduction that explains the concepts and the important details instead of simply listing
the classes and their functions. This book is written exactly for that purpose. First, it introduces the

2 Chapter 1: About this Book

library and all of its components from a conceptional point of view. Next, it describes the details
needed for practical programming. Examples are included to demonstrate the exact usage of the
components. Thus, this book is a detailed introduction to the C++ library for both the beginner and
the practical programmer. Armed with the data provided herein, you should be able to take full
advantage of the C++ standard library.

Caveat | don't promise that everything described is easy and self-explanatory. The library
provides a lot of flexibility, but flexibility for nontrivial purposes has a price. Beware that the library
has traps and pitfalls, which | point out when we encounter them and suggest ways of avoiding them.

1.2 What You Should Know Before Reading this Book

To get the most from this book you should already know C++. (The book describes the standard
components of C++, but not the language itself.) You should be familiar with the concepts of classes,
inheritance, templates, and exception handling. However, you don’t have to know all of the minor
details about the language. The important details are described in the book (the minor details about
the language are more important for people who want to implement the library rather than use it).
Note that the language has changed during the standardization process, so your knowledge might not
be up to date. Section 2.2, page 9, provides a brief overview and introduction of the latest language
features that are important for using the library. You should read this section if you are not sure
whether you know all the new features of C++ (such as the keywppdname and the concept of
namespaces).

1.3 Style and Structure of the Book

The C++ standard library provides different components that are somewhat but not totally inde-
pendent of each other, so there is no easy way to describe each part without mentioning others. |
considered several different approaches for presenting the contents of this book. One was on the
order of the C++ standard. However, this is not the best way to explain the components of the C++
standard library from scratch. Another was to start with an overview of all components followed by
chapters that provided more details. Alternatively, | could have sorted the components, trying to find
an order that had a minimum of cross-references to other sections. My solution was to use a mixture
of all three approaches. | start with a brief introduction of the general concepts and the utilities that
are used by the library. Then, | describe all the components, each in one or more chapters. The first
component is the standard template library (STL). There is no doubt that the STL is the most pow-
erful, most complex, and most exciting part of the library. Its design influences other components
heavily. Then | describe the more self-explanatory components, such as special containers, strings,
and numeric classes. The next component discussed is one you probably know and use already: the
IOStream library. It is followed by a discussion of internationalization, which had some influence
on the IOStream library.

Each component description begins with the component’s purpose, design, and some examples.
Next, a detailed description follows that begins with different ways to use the component, as well

1.3 Style and Structure of the Book 3

as any traps and pitfalls associated with it. The description usually ends with a reference section, in
which you can find the exact signature and definition of a component’s classes and its functions.

The following is a description of the book’s contents. The first four chapters introduce this book

and the C++ standard library in general:

Chapter 1: About this Book

This chapter (which you are reading right now) introduces the book’s subject and describes its
contents.

Chapter 2: Introduction to C++ and the Standard Library

This chapter provides a brief overview of the history of the C++ standard library and the context
of its standardization. It also contains some general hints regarding the technical background for
this book and the library, such as new language features and the concept of complexity.

Chapter 3: General Concepts

This chapter describes the fundamental concepts of the library that you need to understand to
work with all the components. In particular, it introduces the namespaéethe format of
header files, and the general support of error and exception handling.

Chapter 4: Utilities

This chapter describes several small utilities provided for the user of the library and for the
library itself. In particular, it describes auxiliary functions suchnag (), min (), andswap (),
typespair andauto_ptr, as well asmumeric_limits, which provide more information about
implementation-specific details of numeric data types.

Chapters 5 through 9 describe all aspects of the STL:

Chapter 5: The Standard Template Library

This chapter presents a detailed introduction to the concept of the STL, which provides container
classes and algorithms that are used to process collections of data. It explains step-by-step the
concept, the problems, and the special programming techniques of the STL, as well as the roles
of its parts.

Chapter 6: STL Containers

This chapter explains the concepts and describes the abilities of the STL's container classes. First
it describes the differences between vectors, deques, lists, sets, and maps, then their common
abilities, and all with typical examples. Lastly it lists and describes all container functions in
form of a handy reference.

Chapter 7: STL Iterators

This chapter deals in detail with the STL's iterator classes. In particular, it explains the different
iterator categories, the auxiliary functions for iterators, and the iterator adapters, such as stream
iterators, reverse iterators, and insert iterators.

Chapter 8: STL Function Objects

This chapter details the STL's function object classes.

Chapter 9: STL Algorithms

This chapter lists and describes the STL's algorithms. After a brief introduction and compatri-
son of the algorithms, each algorithm is described in detail followed by one or more example
programs.

Chapter 1: About this Book

Chapters 10 through 12 describe “simple” individual standard classes:

Chapter 10: Special Containers

This chapter describes the different special container classes of the C++ standard library. It
covers the container adapters for queues and stacks, as well as ths ekasis which manages

a bitfield with an arbitrary number of bits or flags.

Chapter 11: Strings

This chapter describes the string types of the C++ standard library (yes, there are more than
one). The standard provides strings as kind of “self-explanatory” fundamental data types with
the ability to use different types of characters.

Chapter 12: Numerics

This chapter describes the numeric components of the C++ standard library. In particular, it
covers types for complex numbers and classes for the processing of arrays of numeric values (the
latter may be used for matrices, vectors, and equations).

Chapters 13 and 14 deal with I/O and internationalization (two closely related subjects):

Chapter 13: Input/Output Using Stream Classes

This chapter covers the I/O component of C++. This component is the standardized form of the
commonly known [OStream library. The chapter also describes details that may be important to
programmers but are typically not so well known. For example, it describes the correct way to
define and integrate special I/O channels, which are often implemented incorrectly in practice.
Chapter 14: Internationalization

This chapter covers the concepts and classes for the internationalization of programs. In particu-
lar, it describes the handling of different character sets, as well as the use of different formats for
such values as floating-point numbers and dates.

The rest of the book contains:

Chapter 15: Allocators

This chapter describes the concept of different memory models in the C++ standard library.
An appendixwith

— Internet Resources

— Bibliography

— Index

1.4 How to Read this Book

This book is a mix of introductory user’s guide and structured reference manual regarding the C++
standard library. The individual components of the C++ standard library are independent of each
other, to some extent, so after reading Chapters 2 through 4 you could read the chapters that discuss
the individual components in any order. Bear in mind, that Chapter 5 through Chapter 9 all describe
the same component. To understand the other STL chapters, you should start with the introduction
to the STL in Chapter 5.

1.5 State of the Art 5

If you are a C++ programmer who wants to know, in general, the concepts and all parts of the
library, you could simply read the book from the beginning to the end. However, you should skip the
reference sections. To program with certain components of the C++ standard library, the best way
to find something is to use the index. | have tried to make the index very comprehensive to save you
time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you'll
find a lot of examples throughout the book. They may be a few lines of code or complete programs.
In the latter case, you'll find the name of the file containing the program as the first comment line.
You can find the files on the Internet at my Web sitai@tp: //www. josuttis.com/libbook/.

1.5 State of the Art

While | was writing this book, the C++ standard was completed. Please bear in mind that some com-
pilers might not yet confirm to it. This will most likely change in the near future. As a consequence,
you might discover that not all things covered in this book work as described on your system, and
you may have to change example programs to fit your specific environment. | can compile almost
all example programs with version 2.8 or higher of the EGCS compiler, which is free for almost all
platforms and available on the Internet (3&&p://egcs.cygnus. com/) and on several software

CDs.

1.6 Example Code and Additional Information

You can access all example programs and acquire more informations about this book and the C++
standard library from my Web site Bttp: //www. josuttis.com/1libbook/. Also, you can find

a lot of additional information about this topic on the Internet. See Internet Resources on page 743
for details.

1.7 Feedback

I welcome your feedback (good and bad) on this book. | tried to prepare it carefully; however,
I'm human, and at some time | have to stop writing and tweaking. So, you may find some errors,
inconsistencies, or subjects that could be described better. Your feedback will give me the chance to
improve later editions. The best way to reach me is by Email:

libbook@josuttis.com

6 Chapter 1: About this Book

You can also reach me by phone, fax, or “snail” mail:

Nicolai M. Josuttis
Berggarten 9

D-38108 Braunschweig
Germany

Phone: +49 5309 5747
Fax: +49 5309 5774

Many thanks.

