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Preface

In the beginning, | only planned to write a small German book (400 pages or so) about the C++ stan-
dard library. That was in 1993. Now, in 1999 you see the result — an English book with more than
800 pages of facts, figures, and examples. My goal is to describe the C++ standard library so that
all (or almost all) your programming questions are answered before you think of the question. Note,
however, that this is not a complete description of all aspects of the C++ standard library. Instead,
| present the most important topics necessary for learning and programming in C++ by using its
standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific
details needed to support every-day programming tasks. Specific code examples are provided to help
you understand the concepts and the details.

That's it — in a nutshell. | hope you get as much pleasure from reading this book as | did from
writing it. Enjoy!
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Chapter 1
About this Book

1.1 Why this Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This
led to the goal of standardization. Only by having a standard, could programs be written that would
run on different platforms — from PCs to mainframes. Furthermore, a stalidiang would enable
programmers to use general components and a higher level of abstraction without losing portability,
rather than having to develop all code from scratch.

The standardization process was started in 1989 by an international ANSI/ISO committee. It
developed the standard based on Bjarne Stroustrup’s biduk€&++ Programming Languagand
The Annotated C++ Reference Manudfter the standard was completed in 1997, several formal
motions by different countries made it an international ISO and ANSI standard in 1998. The stan-
dardization process included the development of a C++ standard library. The library extends the core
language to provide some general components. By using C++’s ability to program new abstract and
generic types, the library provides a set of common classes and interfaces. This gives programmers
a higher level of abstraction. The library provides the ability to use

e String types

¢ Different data structures (such as dynamic arrays, linked lists, and binary trees)

e Different algorithms (such as different sorting algorithms)

e Numeric classes

e Input/output (1/0) classes

e Classes for internationalization support

All of these are supported by a fairly simple programming interface. These components are very

important for many programs. These days, data processing often means inputting, computing, pro-
cessing, and outputting large amounts of data, which are often strings.

The library is not self-explanatory. To use these components and to benefit from their power, you
need a good introduction that explains the concepts and the important details instead of simply listing
the classes and their functions. This book is written exactly for that purpose. First, it introduces the
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library and all of its components from a conceptional point of view. Next, it describes the details
needed for practical programming. Examples are included to demonstrate the exact usage of the
components. Thus, this book is a detailed introduction to the C++ library for both the beginner and
the practical programmer. Armed with the data provided herein, you should be able to take full
advantage of the C++ standard library.

Caveat | don't promise that everything described is easy and self-explanatory. The library
provides a lot of flexibility, but flexibility for nontrivial purposes has a price. Beware that the library
has traps and pitfalls, which | point out when we encounter them and suggest ways of avoiding them.

1.2 What You Should Know Before Reading this Book

To get the most from this book you should already know C++. (The book describes the standard
components of C++, but not the language itself.) You should be familiar with the concepts of classes,
inheritance, templates, and exception handling. However, you don’t have to know all of the minor
details about the language. The important details are described in the book (the minor details about
the language are more important for people who want to implement the library rather than use it).
Note that the language has changed during the standardization process, so your knowledge might not
be up to date. Section 2.2, page 9, provides a brief overview and introduction of the latest language
features that are important for using the library. You should read this section if you are not sure
whether you know all the new features of C++ (such as the keywppdname and the concept of
namespaces).

1.3 Style and Structure of the Book

The C++ standard library provides different components that are somewhat but not totally inde-
pendent of each other, so there is no easy way to describe each part without mentioning others. |
considered several different approaches for presenting the contents of this book. One was on the
order of the C++ standard. However, this is not the best way to explain the components of the C++
standard library from scratch. Another was to start with an overview of all components followed by
chapters that provided more details. Alternatively, | could have sorted the components, trying to find
an order that had a minimum of cross-references to other sections. My solution was to use a mixture
of all three approaches. | start with a brief introduction of the general concepts and the utilities that
are used by the library. Then, | describe all the components, each in one or more chapters. The first
component is the standard template library (STL). There is no doubt that the STL is the most pow-
erful, most complex, and most exciting part of the library. Its design influences other components
heavily. Then | describe the more self-explanatory components, such as special containers, strings,
and numeric classes. The next component discussed is one you probably know and use already: the
IOStream library. It is followed by a discussion of internationalization, which had some influence
on the IOStream library.

Each component description begins with the component’s purpose, design, and some examples.
Next, a detailed description follows that begins with different ways to use the component, as well



1.3 Style and Structure of the Book 3

as any traps and pitfalls associated with it. The description usually ends with a reference section, in
which you can find the exact signature and definition of a component’s classes and its functions.

The following is a description of the book’s contents. The first four chapters introduce this book

and the C++ standard library in general:

Chapter 1: About this Book

This chapter (which you are reading right now) introduces the book’s subject and describes its
contents.

Chapter 2: Introduction to C++ and the Standard Library

This chapter provides a brief overview of the history of the C++ standard library and the context
of its standardization. It also contains some general hints regarding the technical background for
this book and the library, such as new language features and the concept of complexity.

Chapter 3: General Concepts

This chapter describes the fundamental concepts of the library that you need to understand to
work with all the components. In particular, it introduces the namespaéethe format of
header files, and the general support of error and exception handling.

Chapter 4: Utilities

This chapter describes several small utilities provided for the user of the library and for the
library itself. In particular, it describes auxiliary functions suchnag (), min (), andswap (),
typespair andauto_ptr, as well asmumeric_limits, which provide more information about
implementation-specific details of numeric data types.

Chapters 5 through 9 describe all aspects of the STL:

Chapter 5: The Standard Template Library

This chapter presents a detailed introduction to the concept of the STL, which provides container
classes and algorithms that are used to process collections of data. It explains step-by-step the
concept, the problems, and the special programming techniques of the STL, as well as the roles
of its parts.

Chapter 6: STL Containers

This chapter explains the concepts and describes the abilities of the STL's container classes. First
it describes the differences between vectors, deques, lists, sets, and maps, then their common
abilities, and all with typical examples. Lastly it lists and describes all container functions in
form of a handy reference.

Chapter 7: STL Iterators

This chapter deals in detail with the STL's iterator classes. In particular, it explains the different
iterator categories, the auxiliary functions for iterators, and the iterator adapters, such as stream
iterators, reverse iterators, and insert iterators.

Chapter 8: STL Function Objects

This chapter details the STL's function object classes.

Chapter 9: STL Algorithms

This chapter lists and describes the STL's algorithms. After a brief introduction and compatri-
son of the algorithms, each algorithm is described in detail followed by one or more example
programs.
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Chapters 10 through 12 describe “simple” individual standard classes:

Chapter 10: Special Containers

This chapter describes the different special container classes of the C++ standard library. It
covers the container adapters for queues and stacks, as well as ths ekasis which manages

a bitfield with an arbitrary number of bits or flags.

Chapter 11: Strings

This chapter describes the string types of the C++ standard library (yes, there are more than
one). The standard provides strings as kind of “self-explanatory” fundamental data types with
the ability to use different types of characters.

Chapter 12: Numerics

This chapter describes the numeric components of the C++ standard library. In particular, it
covers types for complex numbers and classes for the processing of arrays of numeric values (the
latter may be used for matrices, vectors, and equations).

Chapters 13 and 14 deal with I/O and internationalization (two closely related subjects):

Chapter 13: Input/Output Using Stream Classes

This chapter covers the I/O component of C++. This component is the standardized form of the
commonly known [OStream library. The chapter also describes details that may be important to
programmers but are typically not so well known. For example, it describes the correct way to
define and integrate special I/O channels, which are often implemented incorrectly in practice.
Chapter 14: Internationalization

This chapter covers the concepts and classes for the internationalization of programs. In particu-
lar, it describes the handling of different character sets, as well as the use of different formats for
such values as floating-point numbers and dates.

The rest of the book contains:

Chapter 15: Allocators

This chapter describes the concept of different memory models in the C++ standard library.
An appendixwith

— Internet Resources

— Bibliography

— Index

1.4 How to Read this Book

This book is a mix of introductory user’s guide and structured reference manual regarding the C++
standard library. The individual components of the C++ standard library are independent of each
other, to some extent, so after reading Chapters 2 through 4 you could read the chapters that discuss
the individual components in any order. Bear in mind, that Chapter 5 through Chapter 9 all describe
the same component. To understand the other STL chapters, you should start with the introduction
to the STL in Chapter 5.
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If you are a C++ programmer who wants to know, in general, the concepts and all parts of the
library, you could simply read the book from the beginning to the end. However, you should skip the
reference sections. To program with certain components of the C++ standard library, the best way
to find something is to use the index. | have tried to make the index very comprehensive to save you
time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you'll
find a lot of examples throughout the book. They may be a few lines of code or complete programs.
In the latter case, you'll find the name of the file containing the program as the first comment line.
You can find the files on the Internet at my Web sitai@tp: //www. josuttis.com/libbook/.

1.5 State of the Art

While | was writing this book, the C++ standard was completed. Please bear in mind that some com-
pilers might not yet confirm to it. This will most likely change in the near future. As a consequence,
you might discover that not all things covered in this book work as described on your system, and
you may have to change example programs to fit your specific environment. | can compile almost
all example programs with version 2.8 or higher of the EGCS compiler, which is free for almost all
platforms and available on the Internet (3&&p://egcs.cygnus. com/) and on several software

CDs.

1.6 Example Code and Additional Information

You can access all example programs and acquire more informations about this book and the C++
standard library from my Web site Bttp: //www. josuttis.com/1libbook/. Also, you can find

a lot of additional information about this topic on the Internet. See Internet Resources on page 743
for details.

1.7 Feedback

I welcome your feedback (good and bad) on this book. | tried to prepare it carefully; however,
I'm human, and at some time | have to stop writing and tweaking. So, you may find some errors,
inconsistencies, or subjects that could be described better. Your feedback will give me the chance to
improve later editions. The best way to reach me is by Email:

libbook@josuttis.com
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You can also reach me by phone, fax, or “snail” mail:

Nicolai M. Josuttis
Berggarten 9

D-38108 Braunschweig
Germany

Phone: +49 5309 5747
Fax: +49 5309 5774

Many thanks.





